

Index

Microbial compatibility of Lignin Biopolymers

Formulation examples WP, WDG

Compatibility and UV-protection of Lignin Biopolymers

Cellulose Fibrils in seed coatings

Sustainability in Borregaard

Biocontrol – a growing market

Sustainable future

Bio-based trend: during recent years major players are investing heavily in bio-based solutions.

Growth rate of 7.5% CAGR

The Biocontrol Market Industry is expected to grow from 11.78 (USD Billion) in 2025 to 22.62 (USD Billion) by 2034.1

Compatibility

Microorganism survival is challenged if they are not compatible with the co-formulants.

UV light degradation
Loss of activity due to UV exposure.

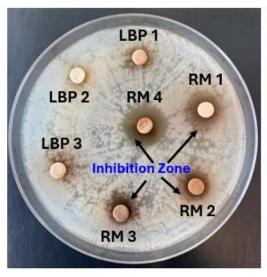
Lignin Biopolymers and Cellulose Fibrils

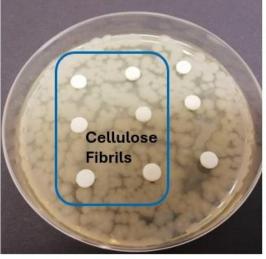
LIGNIN BIOPOLYMERS

- Sulfonated lignin
- Available with different cations (Ca, Na, NH₄)
- Robust dispersant (salt tolerance, temperature, pH)
- Delivered as powder or liquid

CELLULOSE FIBRILS

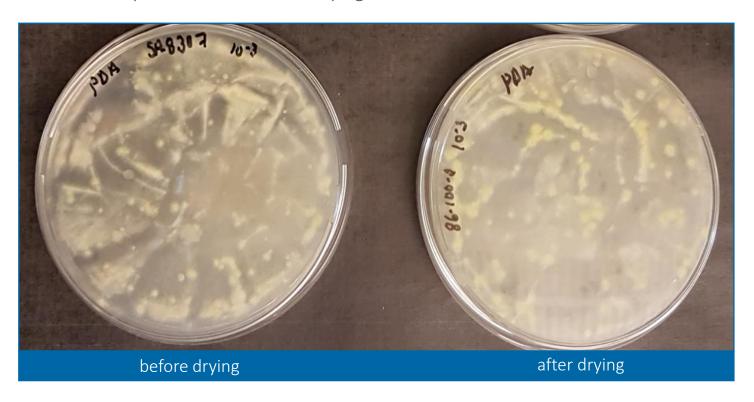
- 3D network of micro-fibrillated Cellulose in water
- High available surface area with functional OH-groups
- Excellent electrolyte tolerance, temperature stability, pH (1-13)
- Delivered as 2% dispersion or as 10% paste




Lignin Biopolymers and Cellulose Fibrils are bio-based and non-GMO

Microbial Compatibility: Lignin Biopolymers & Cellulose Fibrils

- With *Bacillus thuringiensis* (*Bt*) gram positive bioinsecticide
- Disk Diffusion Assay the Qualitative approach
 - No inhibition zone around Lignin Biopolymer (10% w/w solution) and Cellulose Fibrils (2% w/w suspension) Compatible
 - Inhibition zone with reference materials (RM = commercially available co-formulants) Incompatible



Lignin Biopolymer	Molecular Weight	Degree of Sulfonation
Activance UV	Low	Low
LBP1	High	Med-low
LBP2	Med-high	Medium
LBP3	Med-high	High
LBP4	High	Med-low

Dry Formulation - WG

- Beauveria bassiana WG spray-dried (60/30°C)
 - → Viability is maintained after drying

INGREDIENT	wt%
B. bassiana	70
Biopolymer	28
Wetting agent	2

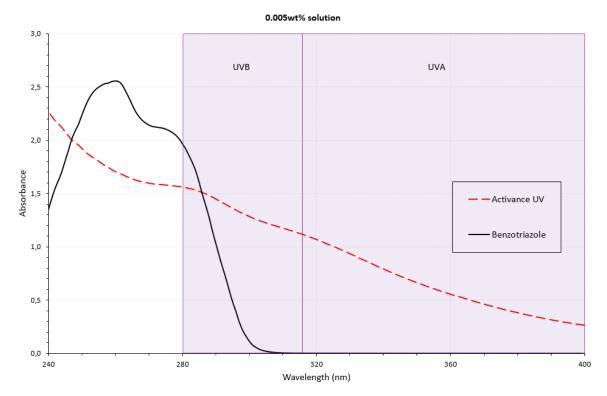
DISPERSANT (LIGNOSULFONATES)	SUSPENSIBILITY (%)
Activance UV	88
LBP 4	98

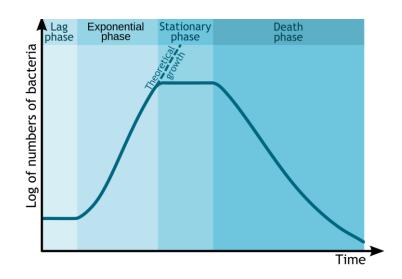
Suspensibility of the granules

Dry Formulation - Fluid Bed Granulation

- Granulated formulation
 - High suspensibility (85%)
 - Good dispersibility (15-20 inversions)

INGREDIENT	wt%
Peptide	30
Microbe	50
Activance UV	17
Maltodextrin	3

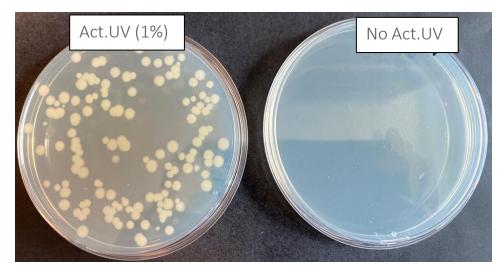




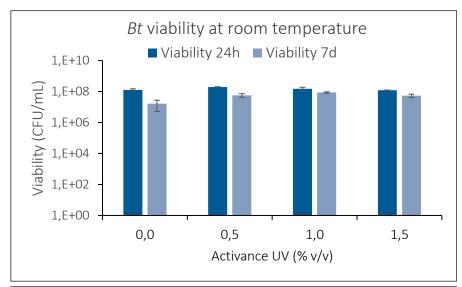
Protocol – Compatibility and UV-protection with Lignin Biopolymers

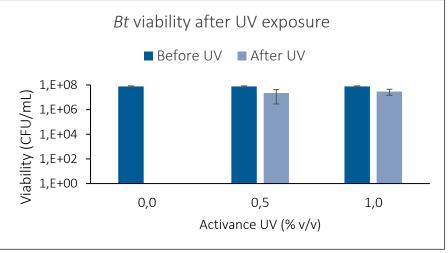
- Microbe in stationary phase mixed with Activance® UV
- Quantitative: Colony forming units (CFU) count

Radiation time = 3-4 hr, 300-400 nm, Irradiance = 40 W/m², temperature ≈ 45 °C



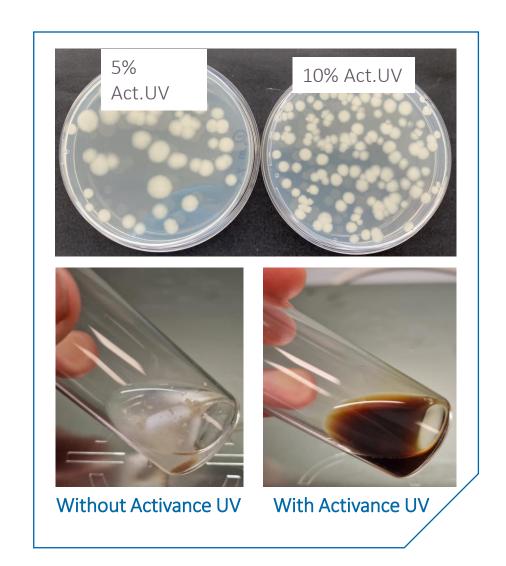
Atlas Suntest XLS+



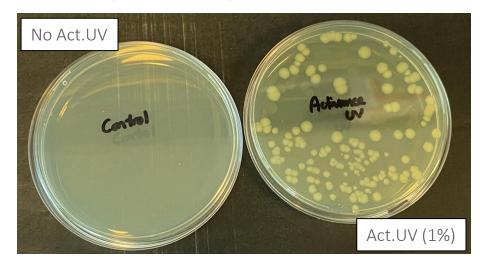

Bacillus thuringiensis (Bt) - Compatibility and UV-protection

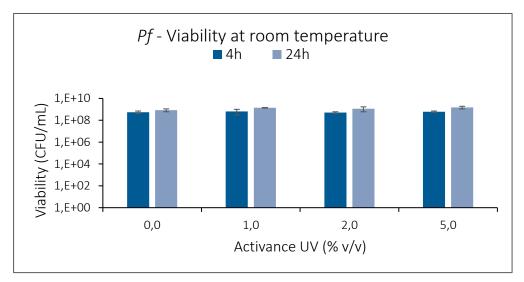
- Storage at room temperature
 - Improved viability on storage in presence of Activance® UV
- UV-protection
 - No viability in absence of Activance UV (Control)
 - Viability maintained in presence of Activance UV

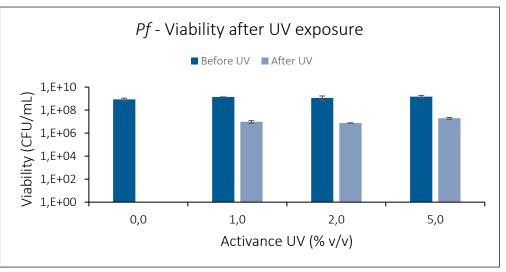
Exposure time = 4 hr, 300-400 nm, irradiance = 40 W/m²; temperature $\approx 45^{\circ}$ C



Bacillus thuringiensis (Bt) Formulation: Wettable powder (WP)

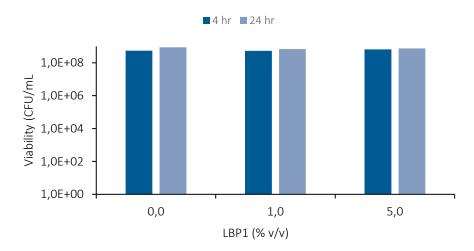

- Spray dried Bacillus thuringiensis (Bt) at low temperature (60/30°C)
- Activance[®] UV as an in-built adjuvant in WP
 - Suspensibility
 - UV-protection
- Bt suspension with Activance UV (5% and 10%)
 - Viability after 4-hour UV exposure
 - CFU = $4.5 \times 10^7 / \text{mL} (5\% \text{ v/v Act.UV})$ = $13 \times 10^7 / \text{mL} (10\% \text{ v/v Act.UV})$
- Excellent re-suspensibility of the formulated powder



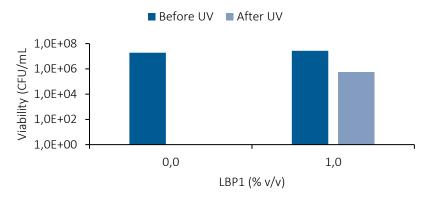

Pseudomonas fluorescens (Pf) – Compatibility & UV-protection

- Gram negative bacteria, non-spore forming, bio-fungicide
- Storage at room temperature
 - Viability maintained after 24h with Activance® UV
- UV-protection
 - No viability in Control
 - Viability observed in presence of Activance UV

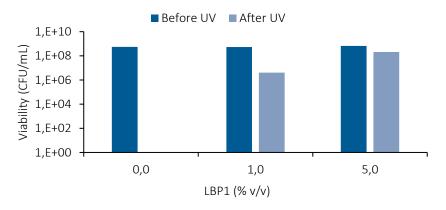
Exposure time = 3 hr, 300 - 400 nm, irradiance = 40 W/m^2 , temp $\approx 45^{\circ}\text{C}$



UV-protection Study with LBP1


- LBP1 high MW lignin, pH stable, med-low sulfonation
 Popular choice for several liquid formulations
- Excellent compatibility with microbes
- Offers also UV-protection
 - Gram negative Pseudomonas fluorescens (Pf)
 - Gram positive Bacillus thuringiensis (Bt)

Pf - Viability at room temperature

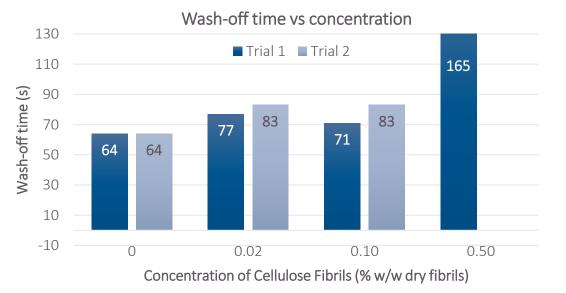


UV test – viability in presence of LBP1

Bt - Viability after UV exposure

Pf - Viability after UV exposure

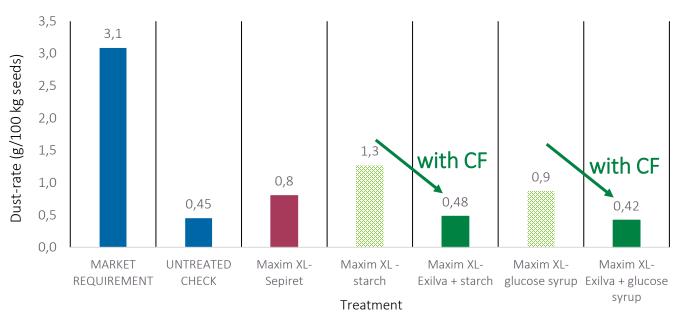
Exposure time = 3 hr, 300 - 400 nm, irradiance = 40 W/m^2 , temp $\approx 45 ^{\circ}\text{C}$


Cellulose Fibrils as Rainfastness Adjuvant

- Exilva's film forming abilities the film can dry homogeneously and prolong the active ingredients residence time on the leaf.
- Rainfastness test:
 - Incorporated Exilva into bio-insecticide dilutions (Tank-Mix)
 - Dilute insecticide formulation and add Exilva
 - Deposit 1 drop of formulation on surface (parafilm)
 - Drop allowed to dry at 20°C for 24 hours
 - Measured time to wash off drop from surface

Rainfastness improved with Cellulose Fibrils (even at 0.02 wt% based on dry)

Cellulose fibrils at 0.2wt% suspended in water sprayed on Pak-Choi leaf


Seed treatment with Cellulose Fibrils

- Corn seeds are treated with a slurry consisting of one of the following:
 - Commercial FS + Commercial seed coat liquid (Polyvinyl Acetate as binder)
 - Commercial FS + Microplastic free seed coat liquid (Exilva cellulose fibrils + starch/glucose as binder)

Corn seeds coated with Exilva cellulose fibrils:

Dust-off rates on Corn

- Reduced dust-off by 50-60%, reduced loss of actives, and good germination rate.
- Microplastic free & OMRI compliant seed coatings.

Borregaard – A sustainable solution



Borregaard's products are derived from sustainably managed forests and represent eco-friendly alternatives to synthetic polymers

COMPARING CO₂ LIFECYCLE OF FOSSIL AND BIO-BASED PRODUCTS

Borregaard's lignin-based biopolymers have a 70 % lower CO₂ footprint through the overall life cycle compared to a synthetic dispersant.

Borregaard's biopolymers have a **negative CO₂ footprint** during their service life!

Summary

- Borregaard's lignin biopolymers and Cellulose Fibrils are bio-based, microplastic free and REACH-exempt.
 - Lower CO₂ footprint compared to synthetic alternatives
- Lignin Biopolymers showcase excellent compatibility with microbes
 - Viability is maintained over prolonged period.
- Activance® UV in a biological formulation
 - UV-protection
 - Excellent suspensibility
- Exilva® has film-forming properties
 - Reduced dust-off of coated seeds, with good germination rates maintained
 - Improved rainfastness of a bioinsecticide with very low fibrils dosage

Thank you

QUESTIONS?

CONTACT THE BORREGAARD R&D TEAM

Download the presentation and learn more here

Sumit Ganguly
Researcher

Hedda Nordli Senior Engineer

Rosasilvia Raggio Researcher

Vishwanath Patil Researcher

Vera Novy Researcher

